Prof. Dr. Ernest Weingartner
Prof. Dr. Ernest Weingartner
Tätigkeiten an der FHNW
- Gruppenleiter Aerosoltechnologie und stellvertretender Institutsleiter am Institut für Sensorik und Elektronik FHNW
- Dozent für Mess- und Sensortechnik, Betreuer von Master- und Bachelor-Studierenden
Forschungsschwerpunkte
- Partikelmesstechnik
- Kohlenstoffhaltige Aerosole (Russ)
- Aerosolerzeugung und Filtration
- Spektroskopie
- Photothermische Methoden
Lehrtätigkeiten
Profil
Arbeitserfahrung
Seit 2018
Stellvertretender Leiter des Instituts für Sensorik und Elektronik FHNW, Fachhochschule Nordwestschweiz FHNW, Hochschule für Technik, Windisch
Seit 2018
Dozent am Departement für Umweltsystemwissenschaften der ETH Zürich
Seit 2018
Teamleiter der Gruppe Aerosoltechnologie im neu gegründeten Institut für Sensorik und Elektronik FHNW
Seit 2018
Professor an der Fachhochschule Nordwestschweiz FHNW
Seit 2014
Wissenschaftlicher Mitarbeiter am Institut für Aerosol- und Sensortechnik FHNW und Dozent an der FHNW
2001 - 2014
Gruppenleiter der Gruppe Aerosolphysik am PSI, Labor für Atmosphärenchemie
1996 - 2001
Wissenschaftlicher Mitarbeiter am PSI, Labor für Radio- und Umweltchemie
Ausbildung
1992 - 1996
Doktorarbeit: “Modification of combustion aerosols in the atmosphere”, No. 11733 im "Labor für Verbrennungsaerosole" an der ETH Zürich
1985 – 1992
Physikstudium an der ETH Zürich
Fachkenntnisse
Ich verfüge über vertiefte Erfahrung in der Planung von Experimenten zur Charakterisierung physikalischer und chemischer Eigenschaften von feinen Aerosolpartikeln (Feinstaub). Bereits während meiner experimentellen Doktorarbeit an der ETHZ untersuchte ich die Alterungsprozesse von realen Russpartikeln in der Atmosphäre. Danach habe ich während 13 Jahren am Paul Scherrer Institut (PSI) die Eigenschaften und Auswirkungen von natürlichen und anthropogenen Aerosolen charakterisiert und damit einen Beitrag zur Gewinnung von besseren Ausgangsdaten für zukünftige Klima- und Luftqualitätsmodelle geleistet. In Feldmesskampagnen in der Nähe und in der Ferne von verschiedenen Aerosolquellen untersuchte ich die physikalischen und chemischen Eigenschaften von Aerosolen, um deren Quellen und Auswirkungen zu verstehen. Eine wichtige Aufgabe bestand darin, die verschiedenen Quellen von kohlenstoffhaltigen Aerosolen zu identifizieren und zu quantifizieren (z. B. Russemissionen aus dem Verkehr oder aus der Holzverbrennung in Haushalten). Diese Daten sind sehr wichtig, da sie dazu genutzt werden können, die Belastung durch hohe Konzentrationen dieser schädlichen Partikel zu verringern und so die Gesundheit der Bevölkerung zu verbessern.
Ich war auch für die Einrichtung und den Betrieb der kontinuierlichen Aerosolmessungen auf der hochalpinen Forschungsstation Jungfraujoch verantwortlich. Diese Messungen wurden im Rahmen des Schweizer Aerosolprogramms Global Atmosphere Watch (GAW) unter der Schirmherrschaft der WMO durchgeführt. Ein Forschungsschwerpunkt war z.B. die Charakterisierung der optischen Eigenschaften von Aerosolen und deren Rolle bei der Bildung von Wolkentröpfchen und Eiskristallen. Die gewonnenen Ergebnisse sind wichtig für die Verbesserung von Klimamodellen, da sie eine bessere Modellierung der komplexen Wechselwirkungen von (anthropogenen) Aerosolpartikeln mit der Strahlung und ihrer Wechselwirkungen in Mischphasenwolken ermöglichen.
Mit meiner Forschung habe ich auch dazu beigetragen, die Unsicherheiten bei der Messung von kohlenstoffhaltigen Partikeln zu verringern. Im Jahr 2003 habe ich die komplexen Prozesse und die daraus resultierenden Artefakte eines Mehrwellenlängen-Absorptionsphotometers (Aethalometer) quantitativ charakterisiert. Diese Arbeit wurde mehr als 1100 Mal zitiert und ebnete den Weg für eine bessere Bestimmung von Aerosolabsorptionskoeffizienten mit filterbasierten Methoden und wird heute für die Quellenbestimmung von atmosphärischen Russpartikeln verwendet. Dennoch sind die Messunsicherheiten dieser filterbasierten Methode nach wie vor gross. Daher habe ich 2014 begonnen, bessere Alternativen zu evaluieren. Die auf photothermischer Interferometrie (PTI) und Photoakustik (PA) basierenden in-situ-Methoden haben meine Aufmerksamkeit erregt. Seitdem arbeitet meine Gruppe an der Verbesserung dieser Techniken, mit denen feine Russpartikel sehr genau gemessen werden können. Mein Team hat eine neue Messtechnik entwickelt, die auf einem Einzelstrahl-PTI basiert. Diese Methode wird derzeit mit Hilfe von Wellenleitern und photonischen integrierten Schaltungen (pic) verfeinert und miniaturisiert.
Ich widme mich der Entwicklung von innovativen Instrumenten zur Beantwortung relevanter Forschungsfragen. Einige Beispiele (neben den oben erwähnten photothermischen Techniken):
- Wir haben einen neuen Aerosolsensors zur zuverlässigen Detektion von Vulkanasche entwickelt. Die vorgesehene Anwendung ist der Einsatz dieser neuen Technik an Bord von Passagierflugzeugen. Der Sensor ermöglicht eine in-situ-Überwachung der Exposition des Flugzeugs gegenüber Vulkanasche.
- Ein Ice Selective Inlet (ISI) ermöglicht die Extraktion kleiner Eispartikel in Mischphasenwolken zur physikochemischen Charakterisierung von Eiskernen.
- Das White-Light Humidified Optical Particle Spectrometer (WHOPS) ist ein neu entwickeltes Instrument, das die Messung der hygroskopischen Eigenschaften von Aerosolen im Supermikrometerbereich ermöglicht. Die hohe zeitliche Auflösung ermöglichte den Einsatz des Instruments an Bord eines Forschungszeppelins im Rahmen eines EU-Projekts zur Untersuchung der Alterungsprozesse von Schadstoffen.
- Das erste Instrument (Tieftemperatur H-TDMA) zur Messung der Abhängigkeit der Aerosolpartikelgrösse von der relativen Feuchte in-situ bei Temperaturen unter 0°C. Diese Pionierarbeit war der Auslöser für die Entwicklung zahlreicher weiterer H-TDMA-Instrumente, die derzeit weltweit in Labors und im Feld zur Quantifizierung der Wasseraufnahme von Aerosolpartikeln eingesetzt werden.
- Ein neues Instrument (DustEar) für die akustische Detektion von Aerosolen, das direkt die Masse einzelner Partikel misst. Diese Entwicklung ist z.B. in der Metrologie gefragt, da sie die Rückverfolgbarkeit der Masse von Aerosolpartikeln ermöglicht.
Autor/Koautor von mehr als 187 wissenschaftlichen Arbeiten (peer-reviewed), h-index: 89 (Stand: März 2023)
Vollständige Publikationslisten
-
Keine peer-reviewed Inhalte verfügbar
-
Beiträge in Zeitschriften, Magazinen oder Zeitungen
-
Peer-reviewed[1]N. Banholzer et al., “Air cleaners and respiratory infections in schools. A modeling study using epidemiological, environmental, and molecular data,” Open Forum Infectious Diseases, Dec. 2023, doi: 10.1101/2023.12.29.23300635.
-
Peer-reviewed[2]A. Keller, P. Specht, P. Steigmeier, and E. Weingartner, “A novel measurement system for unattended, in situ characterization of carbonaceous aerosols,” Aerosol Research, vol. 1, no. 1, pp. 65–79, Dec. 2023, doi: 10.5194/ar-1-65-2023.
-
Peer-reviewed[3]B. Visser et al., “Waveguide based passively demodulated photothermal interferometer for light absorption measurements of trace substances,” Applied Optics, vol. 62, no. 2, pp. 374–384, 2023, doi: 10.1364/ao.476868.
-
Peer-reviewed[4]A. Held et al., “Interdisziplinäre Perspektiven zur Bedeutung der Aerosolübertragung für das Infektionsgeschehen von SARS-CoV-2,” Das Gesundheitswesen, vol. 84, no. 7, pp. 566–574, 2022, doi: 10.1055/a-1808-0086.
-
Peer-reviewed[5]N. Karlen, T. Rüggeberg, B. Visser, J. Hoffmann, D. Weiss, and E. Weingartner, “Single aerosol particle detection by acoustic impaction,” IEEE Sensors Journal, vol. 22, no. 12, pp. 11584–11593, 2022, doi: 10.1109/jsen.2022.3172861.
-
Peer-reviewed[6]L. Drinovec et al., “A dual-wavelength photothermal aerosol absorption monitor. Design, calibration and performance,” Atmospheric Measurement Techniques, vol. 15, no. 12, pp. 3805–3825, 2022, doi: 10.5194/amt-15-3805-2022.
-
Peer-reviewed[7]D. M. Kalbermatter et al., “Comparing black carbon and aerosol absorption measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter,” Atmospheric Measurement Techniques, vol. 15, no. 2, pp. 561–572, 2022, doi: 10.5194/amt-15-561-2022.
-
Peer-reviewed[8]G. Titos et al., “A global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties,” Atmospheric Chemistry and Physics, vol. 21, no. 17, pp. 13031–13050, 2021, doi: 10.5194/acp-21-13031-2021.
-
Peer-reviewed[9]B. Visser, J. Röhrbein, P. Steigmeier, L. Drinovec, G. Močnik, and E. Weingartner, “A single-beam photothermal interferometer for in situ measurements of aerosol light absorption,” Atmospheric Measurement Techniques, vol. 13, no. 12, pp. 7097–7111, 2020, doi: 10.5194/amt-13-7097-2020.
-
Peer-reviewed[10]M. Pandolfi et al., “A European aerosol phenomenology - 6. Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites,” Atmospheric Chemistry and Physics, vol. 18, no. 11, pp. 7877–7911, 2018, doi: 10.5194/acp-18-7877-2018.
-
Peer-reviewed[11]P. Schlag et al., “Ambient and laboratory observations of organic ammonium salts in PM₁,” Faraday Discussions, vol. 2017, no. 200, pp. 331–351, 2017, doi: 10.1039/c7fd00027h.
-
Peer-reviewed[12]J. Kirby et al., “Ion-induced nucleation of pure biogenic particles,” Nature, no. 533, pp. 521–526, May 2016, doi: 10.26041/fhnw-9643.
-
Peer-reviewed[13]P. Kupiszewski et al., “Ice residual properties in mixed‐phase clouds at the high‐alpine Jungfraujoch site,” Journal of Geophysical Research: Atmospheres, vol. 121, no. 20, pp. 12343–12362, 2016, doi: 10.1002/2016jd024894.
-
Peer-reviewed[14]B. Rosati et al., “Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns,” Atmospheric Chemistry and Physics, vol. 16, no. 11, pp. 7295–7315, 2016, doi: 10.5194/acp-16-7295-2016.
-
Peer-reviewed[15]J. Tröstl et al., “The role of low-volatility organic compounds in initial particle growth in the atmosphere,” Nature, vol. 533, pp. 527–531, 2016, doi: 10.1038/nature18271.
-
Peer-reviewed[16]F. Bianchi et al., “New particle formation in the free troposphere. A question of chemistry and timing,” Science, vol. 352, no. 6289, pp. 1109–1112, 2016, doi: 10.1126/science.aad5456.
-
Peer-reviewed[17]M. Zanatta et al., “A European aerosol phenomenology-5. Climatology of black carbon optical properties at 9 regional background sites across Europe,” Atmospheric Environment, vol. 145, pp. 346–364, 2016, doi: 10.1016/j.atmosenv.2016.09.035.
-
Peer-reviewed[18]J. Tröstl et al., “Contribution of new particle formation to the total aerosol concentration at the high‐altitude site Jungfraujoch (3580 m asl, Switzerland),” Journal of Geophysical Research: Atmospheres, vol. 121, no. 19, pp. 11692–11711, 2016, doi: 10.1002/2015JD024637.
-
Peer-reviewed[19]N. Bukowiecki et al., “A review of more than 20 years of aerosol observation at the high altitude research station Jungfraujoch, Switzerland (3580 m asl),” Aerosol and Air Quality Research, vol. 16, no. 3, pp. 764–788, 2016, doi: 10.4209/aaqr.2015.05.0305.
-
Peer-reviewed[20]C. R. Hoyle et al., “Chemical and physical influences on aerosol activation in liquid clouds. A study based on observations from the Jungfraujoch, Switzerland,” Atmospheric Chemistry and Physics, vol. 16, no. 6, pp. 4043–4061, 2016, doi: 10.5194/acp-16-4043-2016.
-
Peer-reviewed[21]H. Gordon et al., “Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation,” Proceedings of the National Academy of Sciences, vol. 113, no. 43, pp. 12053–12058, 2016, doi: 10.1073/pnas.1602360113.
-
Peer-reviewed[22]B. Rosati et al., “Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar,” Atmospheric Chemistry and Physics, vol. 16, no. 7, pp. 4539–4554, 2016, doi: 10.5194/acp-16-4539-2016.
-
Peer-reviewed[23]Z. Jurányi, H. Burtscher, M. Loepfe, M. Nenkov, and E. Weingartner, “Dual-wavelength light-scattering technique for selective detection of volcanic ash particles in the presence of water droplets,” Atmospheric Measurement Techniques, vol. 8, no. 12, pp. 5213–5222, 2015, doi: 10.5194/amt-8-5213-2015.
-
Peer-reviewed[24]E. Hammer et al., “Sensitivity estimations for cloud droplet formation in the vicinity of the high-alpine research station Jungfraujoch (3580 m a.s.l.),” Atmospheric Chemistry and Physics, vol. 15, no. 18, pp. 10309–10323, 2015, doi: 10.5194/acp-15-10309-2015.
-
Peer-reviewed[25]E. Herrmann et al., “Analysis of long‐term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport,” Journal of Geophysical Research: Atmospheres, vol. 120, no. 18, pp. 9459–9480, 2015, doi: 10.1002/2015jd023660.
-
Peer-reviewed[26]A. Worringen et al., “Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques,” Atmospheric Chemistry and Physics, vol. 15, no. 8, pp. 4161–4178, 2015, doi: 10.5194/acp-15-4161-2015.
-
Peer-reviewed[27]M. Paramonov et al., “A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network,” Atmospheric Chemistry and Physics, vol. 15, no. 21, pp. 12211–12229, 2015, doi: 10.5194/acp-15-12211-2015.
-
Peer-reviewed[28]P. Kupiszewski et al., “The ice selective inlet. a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds,” Atmospheric Measurement Techniques, vol. 8, no. 8, pp. 3087–3106, 2015, doi: 10.5194/amt-8-3087-2015.
-
Peer-reviewed[29]B. Rosati, G. Wehrle, M. Gysel, P. Zieger, U. Baltensperger, and E. Weingartner, “The white-light humidified optical particle spectrometer (WHOPS) - a novel airborne system to characterize aerosol hygroscopicity,” Atmospheric Measurement Techniques, vol. 8, no. 2, pp. 921–939, 2015, doi: 10.5194/amt-8-921-2015.
-
Peer-reviewed[30]C. Ketterer et al., “Investigation of the planetary boundary layer in the Swiss Alps using remote sensing and in situ measurements,” Boundary-Layer Meteorology, vol. 151, pp. 317–334, 2014, doi: 10.1007/s10546-013-9897-8.
-
Peer-reviewed[31]A. Griffiths et al., “Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch,” Atmospheric Chemistry and Physics, vol. 14, no. 23, pp. 12763–12779, 2014, doi: 10.5194/acp-14-12763-2014.
-
Peer-reviewed[32]E. Hammer et al., “Investigation of the effective peak supersaturation for liquid-phase clouds at the high-alpine site Jungfraujoch, Switzerland (3580 m a.s.l.),” Atmospheric Chemistry and Physics, vol. 14, no. 2, pp. 1123–1139, 2014, doi: 10.5194/acp-14-1123-2014.
-
Peer-reviewed[33]E. Hammer et al., “Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign,” Atmospheric Chemistry and Physics, vol. 14, no. 19, pp. 10517–10533, 2014, doi: 10.5194/acp-14-10517-2014.
-
Peer-reviewed[34]F. Riccobono et al., “Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles,” Science, vol. 344, no. 6185, pp. 717–721, 2014, doi: 10.1126/science.1243527.
-
Peer-reviewed[35]P. Zieger et al., “Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol,” Tellus B: Chemical and Physical Meteorology, vol. 66, no. 1, 2014, doi: 10.3402/tellusb.v66.22716.
-
Peer-reviewed[36]R. M. Healy et al., “Predicting hygroscopic growth using single particle chemical composition estimates,” Journal of Geophysical Research: Atmospheres, vol. 119, no. 15, pp. 9567–9577, 2014, doi: 10.1002/2014jd021888.
-
Peer-reviewed[37]D. Beddows et al., “Variations in tropospheric submicron particle size distributions across the European continent 2008–2009,” Atmospheric Chemistry and Physics, vol. 14, no. 8, pp. 4327–4348, 2014, doi: 10.5194/acp-14-4327-2014.
-
Peer-reviewed[38]C. Chou et al., “Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles,” Atmospheric Chemistry and Physics, vol. 13, no. 2, pp. 761–772, 2013, doi: 10.5194/acp-13-761-2013.
-
Peer-reviewed[39]M. Frosch et al., “CCN activity and volatility of β-caryophyllene secondary organic aerosol,” Atmospheric Chemistry and Physics, vol. 13, no. 4, pp. 2283–2297, 2013, doi: 10.5194/acp-13-2283-2013.
-
Peer-reviewed[40]A. Asmi et al., “Aerosol decadal trends – Part 2. In-situ aerosol particle number concentrations at GAW and ACTRIS stations,” Atmospheric Chemistry and Physics, vol. 13, no. 2, pp. 895–916, 2013, doi: 10.5194/acp-13-895-2013.
-
Peer-reviewed[41]M. Laborde et al., “Black carbon physical properties and mixing state in the European megacity Paris,” Atmospheric Chemistry and Physics, vol. 13, no. 11, pp. 5831–5856, 2013, doi: 10.5194/acp-13-5831-2013.
-
Peer-reviewed[42]Z. Jurányi et al., “Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris,” Atmospheric Chemistry and Physics, vol. 13, no. 13, pp. 6431–6446, 2013, doi: 10.5194/acp-13-6431-2013.
-
Peer-reviewed[43]M. Martin et al., “Hygroscopic properties of fresh and aged wood burning particles,” Journal of Aerosol Science, vol. 56, pp. 15–29, 2013, doi: 10.1016/j.jaerosci.2012.08.006.
-
Peer-reviewed[44]H. Keskinen et al., “Evolution of particle composition in CLOUD nucleation experiments,” Atmospheric Chemistry and Physics, vol. 13, no. 11, pp. 5587–5600, 2013, doi: 10.5194/acp-13-5587-2013.
-
Peer-reviewed[45]M. Collaud Coen et al., “Aerosol decadal trends – Part 1. In-situ optical measurements at GAW and IMPROVE stations,” Atmospheric Chemistry and Physics, vol. 13, no. 2, pp. 869–894, 2013, doi: 10.5194/acp-13-869-2013.
-
Peer-reviewed[46]J. Almeida et al., “Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere,” Nature, vol. 502, pp. 359–363, 2013, doi: 10.1038/nature12663.
-
Peer-reviewed[47]P. Zieger, R. Fierz-Schmidhauser, E. Weingartner, and U. Baltensperger, “Effects of relative humidity on aerosol light scattering. results from different European sites,” Atmospheric Chemistry and Physics, vol. 13, no. 21, pp. 10609–10631, 2013, doi: 10.5194/acp-13-10609-2013.
-
Peer-reviewed[48]P. Mertes et al., “A compact and portable deposition chamber to study nanoparticles in air-exposed tissue,” Journal of Aerosol Medicine and Pulmonary Drug Delivery, vol. 26, no. 4, pp. 228–235, 2013, doi: 10.1089/jamp.2012.0985.
-
Peer-reviewed[49]J.-P. Pietikäinen et al., “The regional aerosol-climate model REMO-HAM,” Geoscientific Model Development, vol. 5, no. 6, pp. 1323–1339, Nov. 2012, doi: 10.5194/gmd-5-1323-2012.
-
Peer-reviewed[50]P. Zieger et al., “Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.),” Atmospheric Chemistry and Physics, vol. 12, no. 15, pp. 7231–7249, Aug. 2012, doi: 10.5194/acp-12-7231-2012.
-
Peer-reviewed[51]A. Wiedensohler et al., “Mobility particle size spectrometers. harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions,” Atmospheric Measurement Techniques, vol. 5, no. 3, pp. 657–685, Mar. 2012, doi: 10.5194/amt-5-657-2012.
-
Peer-reviewed[52]M. F. Heringa et al., “A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra,” Atmospheric Chemistry and Physics, vol. 12, no. 4, pp. 2189–2203, 2012, doi: 10.5194/acp-12-2189-2012.
-
Peer-reviewed[53]J. K. Spiegel, P. Zieger, N. Bukowiecki, E. Hammer, E. Weingartner, and W. Eugster, “Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100),” Atmospheric Measurement Techniques, vol. 5, no. 9, pp. 2237–2260, 2012, doi: 10.5194/amt-5-2237-2012.
-
Peer-reviewed[54]F. Riccobono et al., “Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth,” Atmospheric Chemistry and Physics, vol. 12, no. 20, pp. 9427–9439, 2012, doi: 10.5194/acp-12-9427-2012.
-
Peer-reviewed[55]C. L. Reddington et al., “Primary versus secondary contributions to particle number concentrations in the European boundary layer,” Atmospheric Chemistry and Physics, vol. 11, no. 23, pp. 12007–12036, Dec. 2011, doi: 10.5194/acp-11-12007-2011.
-
Peer-reviewed[56]E. Andrews et al., “Climatology of aerosol radiative properties in the free troposphere,” Atmospheric Research, vol. 102, no. 4, pp. 365–393, Dec. 2011, doi: 10.1016/j.atmosres.2011.08.017.
-
Peer-reviewed[57]M. Frosch et al., “Relating cloud condensation nuclei activity and oxidation level of α-pinene secondary organic aerosols,” Journal of Geophysical Research: Atmospheres, vol. 116, no. D22, Nov. 2011, doi: 10.1029/2011jd016401.
-
Peer-reviewed[58]V. Zelenay et al., “Aging induced changes on NEXAFS fingerprints in individual combustion particles,” Atmospheric Chemistry and Physics, vol. 11, no. 22, pp. 11777–11791, Nov. 2011, doi: 10.5194/acp-11-11777-2011.
-
Peer-reviewed[59]T. Tritscher et al., “Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber,” Atmospheric Chemistry and Physics, vol. 11, no. 22, pp. 11477–11496, Nov. 2011, doi: 10.5194/acp-11-11477-2011.
-
Peer-reviewed[60]N. Bukowiecki et al., “Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010,” Atmospheric Chemistry and Physics, vol. 11, no. 19, pp. 10011–10030, Oct. 2011, doi: 10.5194/acp-11-10011-2011.
-
Peer-reviewed[61]C. Chou, O. Stetzer, E. Weingartner, Z. Jurányi, Z. A. Kanji, and U. Lohmann, “Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps,” Atmospheric Chemistry and Physics, vol. 11, no. 10, pp. 10011–10030, Oct. 2011, doi: 10.5194/acp-11-4725-2011.
-
Peer-reviewed[62]J. Kirkby et al., “Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation,” Nature, vol. 476, pp. 429–433, Aug. 2011, doi: 10.1038/nature10343.
-
Peer-reviewed[63]M. F. Heringa et al., “Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer,” Atmospheric Chemistry and Physics, vol. 11, no. 12, pp. 5945–5957, Jun. 2011, doi: 10.5194/acp-11-5945-2011.
-
Peer-reviewed[64]M. Collaud Coen et al., “Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types,” Atmospheric Chemistry and Physics, vol. 11, no. 12, pp. 5931–5944, Jun. 2011, doi: 10.5194/acp-11-5931-2011.
-
Peer-reviewed[65]A. Asmi et al., “Number size distributions and seasonality of submicron particles in Europe 2008–2009,” Atmospheric Chemistry and Physics, vol. 11, no. 11, pp. 5505–2011, Jun. 2011, doi: 10.5194/acp-11-5505-2011.
-
Peer-reviewed[66]Z. Jurányi, M. Gysel, E. Weingartner, N. Bukowiecki, L. Kammermann, and U. Baltensperger, “A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch,” Journal of Geophysical Research: Atmospheres, vol. 116, no. D10, May 2011, doi: 10.1029/2010jd015199.
-
Peer-reviewed[67]R. Chirico et al., “Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation,” Atmospheric Environment, vol. 45, no. 13, pp. 2182–2192, Apr. 2011, doi: 10.1016/j.atmosenv.2011.01.069.
-
Peer-reviewed[68]M. Ebert, A. Worringen, N. Benker, S. Mertes, E. Weingartner, and S. Weinbruch, “Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds,” Atmospheric Chemistry and Physics, vol. 11, no. 6, pp. 2805–2816, Mar. 2011, doi: 10.5194/acp-11-2805-2011.
-
Peer-reviewed[69]P. Zieger et al., “Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw,” Atmospheric Chemistry and Physics, vol. 11, no. 6, pp. 2603–2624, Mar. 2011, doi: 10.5194/acp-11-2603-2011.
-
Peer-reviewed[70]J. Duplissy et al., “Relating hygroscopicity and composition of organic aerosol particulate matter,” Atmospheric Chemistry and Physics, vol. 11, no. 3, pp. 1155–1165, Feb. 2011, doi: 10.5194/acp-11-1155-2011.
-
Peer-reviewed[71]T. Tritscher et al., “Changes of hygroscopicity and morphology during ageing of diesel soot,” Environmental Research Letters, vol. 6, no. 3, 2011, doi: 10.1088/1748-9326/6/3/034026.
-
Peer-reviewed[72]T. Müller et al., “Characterization and intercomparison of aerosol absorption photometers. result of two intercomparison workshops,” Atmospheric Measurement Techniques, vol. 4, no. 2, pp. 245–268, 2011, doi: 10.5194/amt-4-245-2011.
-
Peer-reviewed[73]R. Chirico et al., “Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments,” Atmospheric Chemistry and Physics, vol. 10, no. 23, pp. 11545–11563, Dec. 2010, doi: 10.5194/acp-10-11545-2010.
-
Peer-reviewed[74]L. Kammermann, M. Gysel, E. Weingartner, and U. Baltensperger, “13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.),” Atmospheric Chemistry and Physics, vol. 10, no. 22, pp. 10717–10732, Nov. 2010, doi: 10.5194/acp-10-10717-2010.
-
Peer-reviewed[75]R. Fierz‐Schmidhauser et al., “Light scattering enhancement factors in the marine boundary layer (Mace Head, Ireland),” Journal of Geophysical Research: Atmospheres, vol. 115, no. D20, Oct. 2010, Available: https://irf.fhnw.ch/handle/11654/46616
-
Peer-reviewed[76]J. Boulon et al., “New particle formation and ultrafine charged aerosol climatology at a high altitude site in the Alps (Jungfraujoch, 3580 m a.s.l., Switzerland),” Atmospheric Chemistry and Physics, vol. 10, no. 19, pp. 9333–9349, Oct. 2010, doi: 10.5194/acp-10-9333-2010.
-
Peer-reviewed[77]Z. Jurányi, M. Gysel, E. Weingartner, P. F. DeCarlo, L. Kammermann, and U. Baltensperger, “Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch,” Atmospheric Chemistry and Physics, vol. 10, no. 16, pp. 7891–7906, Aug. 2010, doi: 10.5194/acp-10-7891-2010.
-
Peer-reviewed[78]H. E. Manninen et al., “EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events,” Atmospheric Chemistry and Physics, vol. 10, no. 16, pp. 7907–7927, Aug. 2010, doi: 10.5194/acp-10-7907-2010.
-
Peer-reviewed[79]D. Liu et al., “Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland,” Atmospheric Chemistry and Physics, vol. 10, no. 15, pp. 7389–7407, Aug. 2010, doi: 10.5194/acp-10-7389-2010.
-
Peer-reviewed[80]D. V. Spracklen et al., “Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation,” Atmospheric Chemistry and Physics, vol. 10, no. 10, pp. 4775–4793, May 2010, doi: 10.5194/acp-10-4775-2010.
-
Peer-reviewed[81]A. Petzold, E. Weingartner, J. Hasselbach, P. Lauer, C. Kurok, and F. Fleischer, “Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions,” Environmental Science & Technology, vol. 44, no. 10, pp. 3800–3805, Apr. 2010, doi: 10.1021/es903681z.
-
Peer-reviewed[82]M. Collaud Coen et al., “Minimizing light absorption measurement artifacts of the Aethalometer. evaluation of five correction algorithms,” Atmospheric Measurement Techniques, vol. 3, no. 2, pp. 457–474, Apr. 2010, doi: 10.5194/amt-3-457-2010.
-
Peer-reviewed[83]R. Fierz-Schmidhauser et al., “Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch,” Atmospheric Chemistry and Physics, vol. 10, no. 5, pp. 2319–2333, Mar. 2010, doi: 10.5194/acp-10-2319-2010.
-
Peer-reviewed[84]L. Kammermann et al., “Subarctic atmospheric aerosol composition. 3. Measured and modeled properties of cloud condensation nuclei,” Journal of Geophysical Research: Atmospheres, vol. 115, no. D4, Feb. 2010, doi: 10.1029/2009JD012447.
-
Peer-reviewed[85]J. Duplissy et al., “Results from the CERN pilot CLOUD experiment,” Atmospheric Chemistry and Physics, vol. 10, no. 4, pp. 1635–1647, Feb. 2010, doi: 10.5194/acp-10-1635-2010.
-
Peer-reviewed[86]R. Fierz-Schmidhauser et al., “Measurement of relative humidity dependent light scattering of aerosols,” Atmospheric Measurement Techniques, vol. 3, no. 1, pp. 39–50, Jan. 2010, doi: 10.5194/amt-3-39-2010.
-
Peer-reviewed[87]A. Metzger et al., “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 15, pp. 6646–6651, Jan. 2010, doi: 10.1073/pnas.0911330107.
-
Peer-reviewed[88]N. Good et al., “Widening the gap between measurement and modelling of secondary organic aerosol properties?,” Atmospheric Chemistry and Physics, vol. 10, no. 6, pp. 2577–2593, 2010, doi: 10.5194/acp-10-2577-2010.
-
Peer-reviewed[89]A. C. Targino et al., “Influence of particle chemical composition on the phase of cold clouds at a high‐alpine site in Switzerland,” Journal of Geophysical Research: Atmospheres, vol. 114, no. D18, Sep. 2009, doi: 10.1029/2008jd011365.
-
Peer-reviewed[90]Z. Jurányi et al., “Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of α-pinene secondary organic aerosol,” Physical Chemistry Chemical Physics, vol. 11, no. 36, pp. 8091–8097, Aug. 2009, doi: 10.1039/b904162a.
-
Peer-reviewed[91]J. Duplissy et al., “Intercomparison study of six HTDMAs. results and recommendations,” Atmospheric Measurement Techniques, vol. 2, no. 2, pp. 363–378, Jul. 2009, doi: 10.26041/fhnw-9715.
-
Peer-reviewed[92]H. Herich et al., “Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties,” Journal of Geophysical Research: Atmospheres, vol. 114, no. D13, Jul. 2009, doi: 10.1029/2008JD011574.
-
Peer-reviewed[93]N. Bukowiecki et al., “Deposition uniformity and particle size distribution of ambient aerosol collected with a rotating drum impactor,” Aerosol Science and Technology, vol. 43, no. 9, pp. 891–901, Jun. 2009, doi: 10.1080/02786820903002431.
-
Peer-reviewed[94]H. Herich et al., “Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions,” Physical Chemistry Chemical Physics, vol. 11, no. 36, pp. 7804–7809, Apr. 2009, doi: 10.1039/b901585j.
-
Peer-reviewed[95]N. K. Meyer et al., “Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles,” Atmospheric Chemistry and Physics, vol. 9, no. 2, pp. 721–732, Jan. 2009, doi: 10.5194/acp-9-721-2009.
-
Peer-reviewed[96]S. Sjögren et al., “Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland,” Atmospheric Chemistry and Physics, vol. 8, no. 18, pp. 5715–5729, Sep. 2008, doi: 10.5194/acp-8-5715-2008.
-
Peer-reviewed[97]J. Sandradewi, A. S. H. Prévôt, E. Weingartner, R. Schmidhauser, M. Gysel, and U. Baltensperger, “A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength aethalometer,” Atmospheric Environment, vol. 42, no. 1, pp. 101–112, Sep. 2008, doi: 10.1016/j.atmosenv.2007.09.034.
-
Peer-reviewed[98]A. A. Zardini et al., “A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles,” Atmospheric Chemistry and Physics, vol. 8, no. 18, pp. 5589–5601, Sep. 2008, doi: 10.5194/acp-8-5589-2008.
-
Peer-reviewed[99]H. Herich et al., “In situ determination of atmospheric aerosol composition as a function of hygroscopic growth,” Journal of Geophysical Research: Atmospheres, vol. 113, no. D16, Aug. 2008, doi: 10.1029/2008jd009954.
-
Peer-reviewed[100]O. Vesna et al., “Changes of fatty acid aerosol hygroscopicity induced by ozonolysis under humid conditions,” Atmospheric Chemistry and Physics, vol. 8, no. 16, pp. 4683–4690, Aug. 2008, doi: 10.5194/acp-8-4683-2008.
-
Peer-reviewed[101]J. Cozic et al., “Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds,” Journal of Geophysical Research: Atmospheres, vol. 113, no. D15, Aug. 2008, doi: 10.1029/2007jd009266.
-
Peer-reviewed[102]T. W. Choularton et al., “The influence of small aerosol particles on the properties of water and ice clouds,” Faraday Discussions, vol. 137, pp. 205–222, Aug. 2008, doi: 10.1039/b702722m.
-
Peer-reviewed[103]A. Petzold et al., “Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer,” Atmospheric Chemistry and Physics, vol. 8, no. 9, pp. 2387–2403, May 2008, doi: 10.5194/acp-8-2387-2008.
-
Peer-reviewed[104]C. Hoose, U. Lohmann, P. Stier, B. Verheggen, and E. Weingartner, “Aerosol processing in mixed‐phase clouds in ECHAM5‐HAM. Model description and comparison to observations,” Journal of Geophysical Research: Atmospheres, vol. 113, no. D7, Apr. 2008, doi: 10.1029/2007jd009251.
-
Peer-reviewed[105]J. Sandradewi et al., “Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter,” Environmental Science & Technology, vol. 42, no. 9, pp. 3316–3323, Apr. 2008, doi: 10.1021/es702253m.
-
Peer-reviewed[106]J. Cozic et al., “Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch,” Atmospheric Chemistry and Physics, vol. 8, no. 2, pp. 407–423, Jan. 2008, doi: 10.5194/acp-8-407-2008.
-
Peer-reviewed[107]E. Swietlicki et al., “Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments - a review,” Tellus B: Chemical and Physical Meteorology, vol. 60, no. 3, pp. 432–469, Jan. 2008, doi: 10.1111/j.1600-0889.2008.00350.x.
-
Peer-reviewed[108]J. Duplissy et al., “Cloud forming potential of secondary organic aerosol under near atmospheric conditions,” Geophysical Research Letters, vol. 35, no. 3, 2008, doi: 10.1029/2007gl031075.
-
Peer-reviewed[109]B. Verheggen et al., “Aerosol partitioning between the interstitial and the condensed phase in mixed‐phase clouds,” Journal of Geophysical Research: Atmospheres, vol. 112, no. D23, Dec. 2007, Available: https://irf.fhnw.ch/handle/11654/46703
-
Peer-reviewed[110]S. Mertes et al., “Counterflow virtual impactor based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei. sampler description and first case study,” Aerosol Science and Technology, vol. 41, no. 9, pp. 848–864, Sep. 2007, doi: 10.1080/02786820701501881.
-
Peer-reviewed[111]M. Collaud Coen et al., “Long‐term trend analysis of aerosol variables at the high‐alpine site Jungfraujoch,” Journal of Geophysical Research: Atmospheres, vol. 112, no. D13, Jul. 2007, doi: 10.1029/2006jd007995.
-
Peer-reviewed[112]J. Cozic et al., “Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch,” Atmospheric Chemistry and Physics, vol. 7, no. 7, pp. 1797–1807, Apr. 2007, doi: 10.5194/acp-7-1797-2007.
-
Peer-reviewed[113]S. Sjögren et al., “Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures,” Journal of Aerosol Science, vol. 38, no. 2, pp. 157–171, Feb. 2007, doi: 10.1016/j.jaerosci.2006.11.005.
-
Peer-reviewed[114]N. Bukowiecki et al., “Iron, manganese and copper emitted by cargo and passenger trains in Zürich (Switzerland). Size-segregated mass concentrations in ambient air,” Atmospheric Environment, vol. 41, no. 4, pp. 878–889, Feb. 2007, doi: 10.1016/j.atmosenv.2006.07.045.
-
Peer-reviewed[115]R. Gehrig et al., “Contribution of railway traffic to local PM10 concentrations in Switzerland,” Atmospheric Environment, vol. 41, no. 5, pp. 923–933, Feb. 2007, doi: 10.1016/j.atmosenv.2006.09.021.
-
Peer-reviewed[116]A. Petzold et al., “Perturbation of the European free troposphere aerosol by North American forest fire plumes during the ICARTT-ITOP experiment in summer 2004,” Atmospheric Chemistry and Physics, vol. 7, no. 19, pp. 5105–5127, 2007, doi: 10.5194/acp-7-5105-2007.
-
Peer-reviewed[117]D. Imhof et al., “Aerosol and NOx emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes,” Atmospheric Chemistry and Physics, vol. 6, no. 8, pp. 2215–2230, Jun. 2006, doi: 10.5194/acp-6-2215-2006.
-
Peer-reviewed[118]A. Vlasenko, S. Sjögren, E. Weingartner, K. Stemmler, H. W. Gäggeler, and M. Ammann, “Effect of humidity on nitric acid uptake to mineral dust aerosol particles,” Atmospheric Chemistry and Physics, vol. 6, no. 8, pp. 2147–2160, Jun. 2006, doi: 10.5194/acp-6-2147-2006.
-
Peer-reviewed[119]R. Fisseha et al., “Seasonal and diurnal characteristics of water soluble inorganic compounds in the gas and aerosol phase in the Zurich area,” Atmospheric Chemistry and Physics, vol. 6, no. 7, pp. 1895–1904, 2006, doi: 10.5194/acp-6-1895-2006.
-
Peer-reviewed[120]J. Dommen et al., “Laboratory observation of oligomers in the aerosol from isoprene/NOₓ photooxidation,” Geophysical Research Letters, vol. 33, no. 13, 2006, doi: 10.1029/2006gl026523.
-
Peer-reviewed[121]R. Fisseha et al., “Online gas and aerosol measurement of water soluble carboxylic acids in Zurich,” Journal of Geophysical Research: Atmospheres, vol. 111, no. D12, 2006, doi: 10.1029/2005jd006782.
-
Peer-reviewed[122]G. B. McFiggans et al., “The effect of physical and chemical aerosol properties on warm cloud droplet activation,” Atmospheric Chemistry and Physics, vol. 6, no. 9, pp. 2593–2649, 2006, doi: 10.5194/acp-6-2593-2006.
-
Peer-reviewed[123]D. Paulsen, E. Weingartner, M. R. Alfarra, and U. Baltensperger, “Volatility measurements of photochemically and nebulizer-generated organic aerosol particles,” Journal of Aerosol Science, vol. 37, no. 9, pp. 1025–1051, 2006, doi: 10.1016/j.jaerosci.2005.08.004.
-
Peer-reviewed[124]A. Vlasenko, S. Sjögren, E. Weingartner, H. W. Gäggeler, and M. Ammann, “Generation of submicron Arizona test dust aerosol. Chemical and hygroscopic properties,” Aerosol Science and Technology, vol. 39, no. 5, pp. 452–460, Oct. 2005, doi: 10.1080/027868290959870.
-
Peer-reviewed[125]D. Imhof et al., “Vertical distribution of aerosol particles and NOx close to a motorway,” Atmospheric Environment, vol. 39, no. 31, pp. 5710–5721, Oct. 2005, doi: 10.1016/j.atmosenv.2004.07.036.
-
Peer-reviewed[126]D. Imhof et al., “Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland,” Environmental Science & Technology, vol. 39, no. 21, pp. 8341–8350, Sep. 2005, doi: 10.1021/es048925s.
-
Peer-reviewed[127]R. Nessler, E. Weingartner, and U. Baltensperger, “Effect of humidity on aerosol light absorption and its implications for extinction and the single scattering albedo illustrated for a site in the lower free troposphere,” Journal of Aerosol Science, vol. 36, no. 8, pp. 958–972, Aug. 2005, doi: 10.1016/j.jaerosci.2004.11.012.
-
Peer-reviewed[128]D. Paulsen et al., “Secondary organic aerosol formation by irradiation of 1,3,5-trimethylbenzene−NOₓ-H2O in a new reaction chamber for atmospheric chemistry and physics,” Environmental Science & Technology, vol. 39, no. 8, pp. 2668–2678, Mar. 2005, doi: 10.1021/es0489137.
-
Peer-reviewed[129]K.-P. Hinz, A. Trimborn, E. Weingartner, S. Henning, U. Baltensperger, and B. Spengler, “Aerosol single particle composition at the Jungfraujoch,” Journal of Aerosol Science, vol. 36, no. 1, pp. 123–145, Jan. 2005, doi: 10.1016/j.jaerosci.2004.08.001.
-
Peer-reviewed[130]U. Baltensperger et al., “Secondary organic aerosols from anthropogenic and biogenic precursors,” Faraday Discussions, vol. 130, pp. 265–278, 2005, doi: 10.1039/b417367h.
-
Peer-reviewed[131]R. Nessler, E. Weingartner, and U. Baltensperger, “Adaptation of dry nephelometer measurements to ambient conditions at the Jungfraujoch,” Environmental Science & Technology, vol. 39, no. 7, pp. 2219–2228, 2005, doi: 10.1021/es035450g.
-
Peer-reviewed[132]A. Petzold et al., “On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles,” Atmospheric Chemistry and Physics, vol. 5, no. 12, pp. 3187–3203, 2005, doi: 10.5194/acp-5-3187-2005.
-
Peer-reviewed[133]M. Collaud Coen et al., “Saharan dust events at the Jungfraujoch. detection by wavelength dependence of the single scattering albedo and first climatology analysis,” Atmospheric Chemistry and Physics, vol. 4, no. 11/12, pp. 2465–2480, Dec. 2004, doi: 10.5194/acp-4-2465-2004.
-
Peer-reviewed[134]R. Gehrig, M. Hill, B. Buchmann, D. Imhof, E. Weingartner, and U. Baltensperger, “Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes,” International Journal of Environment and Pollution, vol. 22, no. 3, pp. 312–325, Oct. 2004, doi: 10.1504/ijep.2004.005549.
-
Peer-reviewed[135]R. Fisseha et al., “Identification of organic acids in secondary organic aerosol and the corresponding gas phase from chamber experiments,” Analytical Chemistry, vol. 76, no. 22, pp. 6535–6540, Oct. 2004, doi: 10.1021/ac048975f.
-
Peer-reviewed[136]S. Nyeki et al., “Properties of jet engine combustion particles during the PartEmis experiment. Particle size spectra (d > 15 nm) and volatility,” Geophysical Research Letters, vol. 31, no. 18, Sep. 2004, doi: 10.1029/2004gl020569.
-
Peer-reviewed[137]R. Van Dingenen et al., “A European aerosol phenomenology - 1. physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe,” Atmospheric Environment, vol. 38, no. 16, pp. 2561–2577, May 2004, doi: 10.1016/j.atmosenv.2004.01.040.
-
Peer-reviewed[138]S. Henning et al., “Aerosol partitioning in natural mixed‐phase clouds,” Geophysical Research Letters, vol. 31, no. 6, Mar. 2004, doi: 10.1029/2003gl019025.
-
Peer-reviewed[139]M. Gysel et al., “Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol,” Atmospheric Chemistry and Physics, vol. 4, no. 1, pp. 35–50, Jan. 2004, doi: 10.5194/acp-4-35-2004.
-
Peer-reviewed[140]M. Kalberer et al., “Identification of polymers as major components of atmospheric organic aerosols,” Science, vol. 303, no. 5664, pp. 1659–1662, 2004, doi: 10.1126/science.1092185.
-
Peer-reviewed[141]H. Saathoff et al., “Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene,” Journal of Aerosol Science, vol. 34, no. 10, pp. 1297–1321, Oct. 2003, doi: 10.1016/s0021-8502(03)00364-1.
-
Peer-reviewed[142]E. Weingartner, H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger, “Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers,” Journal of Aerosol Science, vol. 34, no. 10, pp. 1445–1463, Oct. 2003, doi: 10.1016/s0021-8502(03)00359-8.
-
Peer-reviewed[143]H. Saathoff et al., “Carbon mass determinations during the AIDA soot aerosol campaign 1999,” Journal of Aerosol Science, vol. 34, no. 10, pp. 1399–1420, Oct. 2003, doi: 10.1016/s0021-8502(03)00365-3.
-
Peer-reviewed[144]P. J. Sturm et al., “Roadside measurements of particulate matter size distribution,” Atmospheric Environment, vol. 37, no. 37, pp. 5273–5281, Oct. 2003, doi: 10.1016/j.atmosenv.2003.05.006.
-
Peer-reviewed[145]N. Bukowiecki, J. Dommen, A. S. H. Prévôt, E. Weingartner, and U. Baltensperger, “Fine and ultrafine particles in the Zürich (Switzerland) area measured with a mobile laboratory: an assessment of the seasonal and regional variation throughout a year,” Atmospheric Chemistry and Physics, vol. 3, no. 5, pp. 1477–1494, Sep. 2003, doi: 10.5194/acp-3-1477-2003.
-
Peer-reviewed[146]R. Hitzenberger et al., “Properties of jet engine combustion particles during the PartEmis experiment. Hygroscopic growth at supersaturated conditions,” Geophysical Research Letters, vol. 30, no. 14, Jul. 2003, doi: 10.1029/2003gl017294.
-
Peer-reviewed[147]A. Petzold et al., “Properties of jet engine combustion particles during the PartEmis experiment. Microphysics and Chemistry,” Geophysical Research Letters, vol. 30, no. 13, Jul. 2003, doi: 10.1029/2003gl017283.
-
Peer-reviewed[148]C. Zellweger et al., “Partitioning of reactive nitrogen (NOy) and dependence on meteorological conditions in the lower free troposphere,” Atmospheric Chemistry and Physics, vol. 3, no. 3, pp. 779–796, Jun. 2003, doi: 10.5194/acp-3-779-2003.
-
Peer-reviewed[149]M. Gysel et al., “Properties of jet engine combustion particles during the PartEmis experiment: Hygroscopicity at subsaturated conditions,” Geophysical Research Letters, vol. 30, no. 11, Jun. 2003, doi: 10.1029/2003gl016896.
-
Peer-reviewed[150]S. Henning et al., “Seasonal variation of water‐soluble ions of the aerosol at the high‐alpine site Jungfraujoch (3580 m asl),” Journal of Geophysical Research: Atmospheres, vol. 108, no. D1, p. ACH 8–1–ACH 8–10, Jan. 2003, doi: 10.1029/2002jd002439.
-
Peer-reviewed[151]R. Nessler, N. Bukowiecki, S. Henning, E. Weingartner, B. Calpini, and U. Baltensperger, “Simultaneous dry and ambient measurements of aerosol size distributions at the Jungfraujoch,” Tellus B: Chemical and Physical Meteorology, vol. 55, no. 3, pp. 808–819, Jan. 2003, doi: 10.3402/tellusb.v55i3.16371.
-
Peer-reviewed[152]N. Bukowiecki, J. Dommen, A. S. H. Prévôt, R. Richter, E. Weingartner, and U. Baltensperger, “A mobile pollutant measurement laboratory - measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution,” Atmospheric Environment, vol. 36, no. 36-37, pp. 5569–5579, Dec. 2002, doi: 10.1016/s1352-2310(02)00694-5.
-
Peer-reviewed[153]N. Bukowiecki, D. B. Kittelson, W. F. Watts, H. Burtscher, E. Weingartner, and U. Baltensperger, “Real-time characterization of ultrafine and accumulation mode particles in ambient combustion aerosols,” Journal of Aerosol Science, vol. 33, no. 8, pp. 1139–1154, Aug. 2002, doi: 10.1016/s0021-8502(02)00063-0.
-
Peer-reviewed[154]S. Henning, E. Weingartner, S. Schmidt, M. Wendisch, H. W. Gäggeler, and U. Baltensperger, “Size-dependent aerosol activation at the high-alpine site Jungfraujoch (3580 m asl),” Tellus B: Chemical and Physical Meteorology, vol. 54, no. 1, pp. 82–95, Jan. 2002, doi: 10.3402/tellusb.v54i1.16650.
-
Peer-reviewed[155]U. Baltensperger et al., “Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy,” Journal of Geophysical Research: Atmospheres, vol. 107, no. D22, p. LOP 6–1–LOP 6–14, 2002, doi: 10.1029/2001jd001292.
-
Peer-reviewed[156]A. Chevillard et al., “Transport of 222Rn using the regional model REMO. a detailed comparison with measurements over Europe,” Tellus B: Chemical and Physical Meteorology, vol. 54, no. 5, pp. 850–871, 2002, doi: 10.1034/j.1600-0889.2002.01339.x.
-
Peer-reviewed[157]E. Weingartner, M. Gysel, and U. Baltensperger, “Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument. setup and first applications,” Environmental Science & Technology, vol. 36, no. 1, pp. 55–62, Nov. 2001, doi: 10.1021/es010054o.
-
Peer-reviewed[158]M. Gysel, E. Weingartner, and U. Baltensperger, “Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols,” Environmental Science & Technology, vol. 36, no. 1, pp. 63–68, Nov. 2001, doi: 10.1021/es010055g.
-
Peer-reviewed[159]Z. Krivácsy et al., “Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites,” Atmospheric Environment, vol. 35, no. 36, pp. 6231–6244, Oct. 2001, doi: 10.1016/s1352-2310(01)00467-8.
-
Peer-reviewed[160]Z. Krivácsy et al., “Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch,” Journal of Atmospheric Chemistry, vol. 39, pp. 235–259, Jul. 2001, doi: 10.1023/a:1010637003083.
-
Peer-reviewed[161]H. Burtscher et al., “Separation of volatile and non-volatile aerosol fractions by thermodesorption. instrumental development and applications,” Journal of Aerosol Science, vol. 32, no. 4, pp. 427–442, Apr. 2001, doi: 10.1016/s0021-8502(00)00089-6.
-
Peer-reviewed[162]N. Streit, E. Weingartner, C. Zellweger, M. Schwikowski, H. W. Gäggeler, and U. Baltensperger, “Characterization of size-fractionated aerosol from the Jungfraujoch (3580 m asl) using total reflection x-ray fluorescence (TXRF),” International Journal of Environmental Analytical Chemistry, vol. 76, no. 1, pp. 1–16, Sep. 2000, doi: 10.1080/03067310008034114.
-
Peer-reviewed[163]C. Zellweger et al., “Summertime NOy speciation at the Jungfraujoch, 3580 m above sea level, Switzerland,” Journal of Geophysical Research: Atmospheres, vol. 105, no. D5, pp. 6655–6667, Mar. 2000, doi: 10.1029/1999jd901126.
-
Peer-reviewed[164]S. Nyeki et al., “Convective boundary layer evolution to 4 km asl over High‐alpine terrain. Airborne lidar observations in the Alps,” Geophysical Research Letters, vol. 27, no. 5, pp. 689–692, Mar. 2000, doi: 10.1029/1999gl010928.
-
Peer-reviewed[165]E. Weingartner, S. Nyeki, and U. Baltensperger, “Seasonal and diurnal variation of aerosol size distributions (10<D<750 nm) at a high‐alpine site (Jungfraujoch 3580 m asl),” Journal of Geophysical Research: Atmospheres, vol. 104, no. D21, pp. 26809–26820, Nov. 1999, doi: 10.1029/1999jd900170.
-
Peer-reviewed[166]S. Nyeki et al., “Condensation nuclei (CN) and ultrafine CN in the free troposphere to 12 km. A case study over the Jungfraujoch High‐Alpine research station,” Geophysical Research Letters, vol. 26, no. 14, pp. 2195–2198, Sep. 1999, doi: 10.1029/1999gl900473.
-
Peer-reviewed[167]S. Nyeki et al., “The background aerosol size distribution in the free troposphere. An analysis of the annual cycle at a high‐alpine site,” Journal of Geophysical Research: Atmospheres, vol. 103, no. D24, pp. 31749–31761, Dec. 1998, doi: 10.1029/1998jd200029.
-
Peer-reviewed[168]S. Nyeki, U. Baltensperger, I. Colbeck, D. T. Jost, E. Weingartner, and H. W. Gäggeler, “The Jungfraujoch high‐alpine research station (3454 m) as a background clean continental site for the measurement of aerosol parameters,” Journal of Geophysical Research: Atmospheres, vol. 103, no. D6, pp. 6097–6107, Mar. 1998, doi: 10.1029/97jd03123.
-
Peer-reviewed[169]U. Baltensperger et al., “Aerosol climatology at the high‐alpine site Jungfraujoch, Switzerland,” Journal of Geophysical Research: Atmospheres, vol. 102, no. D16, pp. 19707–19715, Aug. 1997, doi: 10.1029/97jd00928.
-
Peer-reviewed[170]E. Weingartner, H. Burtscher, and U. Baltensperger, “Hygroscopic properties of carbon and diesel soot particles,” Atmospheric Environment, vol. 31, no. 15, pp. 2311–2327, Aug. 1997, doi: 10.1016/s1352-2310(97)00023-x.
-
Peer-reviewed[171]E. Weingartner, C. Keller, W. Stahel, H. Burtscher, and U. Baltensperger, “Aerosol emission in a road tunnel,” Atmospheric Environment, vol. 31, no. 3, pp. 451–462, Feb. 1997, doi: 10.1016/s1352-2310(96)00193-8.
-
Peer-reviewed[172]M. Kalberer et al., “Heterogeneous chemical processing of 13NO2 by monodisperse carbon aerosols at very low concentrations,” The Journal of Physical Chemistry, vol. 100, no. 38, pp. 15487–15493, Sep. 1996, doi: 10.1021/jp9606974.
-
Peer-reviewed[173]E. Weingartner, U. Baltensperger, and H. Burtscher, “Growth and structural change of combustion aerosols at high relative humidity,” Environmental Science & Technology, vol. 29, no. 12, pp. 2982–2986, Dec. 1995, doi: 10.1021/es00012a014.
-
Peer-reviewed[174]L. Mosimann, E. Weingartner, and A. Waldvogel, “An analysis of accreted drop sizes and mass on rimed snow crystals,” Journal of the Atmospheric Sciences, vol. 51, no. 11, pp. 1548–1558, Jun. 1994, doi: 10.1175/1520-0469(1994)051<1548:AAOADS>2.0.CO;2.
-
Beiträge in Sammelbänden oder Konferenzschriften
-
Peer-reviewed[1]E. Weingartner et al., “Development of a waveguide-based interferometer for the measurement of trace substances,” presented at the Precision Photonic Systems ’23, Meyrin: Zenodo, Nov. 2023. doi: 10.5281/zenodo.10077921.
-
Peer-reviewed[2]E. Weingartner, Z. Jurányi, D. Egli, P. Steigmeier, and H. Burtscher, “Development of an airborne sensor for reliable detection of volcanic ash,” in 3rd IEEE International Workshop on Metrology for Aerospace. Proceedings, New York: IEEE, 2016. doi: 10.1109/MetroAeroSpace.2016.7573179.
-
Peer-reviewed[3]H. Keskinen et al., “Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics,” in Nucleation and atmospheric aerosols, P. J. DeMott, C. D. O’Dowd, and AIP Conference Proceedings, Eds., Maryland: AIP Publishing, Jun. 2013, pp. 291–294. doi: 10.1063/1.4803260.
-
Peer-reviewed[4]F. Bianchi et al., “Particle nucleation events at the high Alpine station Jungfraujoch,” in Nucleation and atmospheric aerosols, P. J. DeMott and O’Dowd Colin D., Eds., Melville: AIP Publishing, May 2013, pp. 222–225. doi: 10.1063/1.4803244.
-
Peer-reviewed[5]J. Dommen et al., “Role of organics in particle nucleation. From the lab to global model,” in Nucleation and atmospheric aerosols, P. J. DeMott and O’Dowd Colin D., Eds., Melville: AIP Publishing, 2013, pp. 330–333. doi: 10.1063/1.4803270.
-
Peer-reviewed[6]J. Tröstl et al., “Aerosol nucleation and growth in a mixture of sulfuric acid/alpha-pinene oxidation products at the CERN CLOUD chamber,” in Nucleation and Atmospheric Aerosols. 19th International Conference, P. J. DeMott and C. D. O’Dowd, Eds., in AIP Conference Proceedings, no. 1527. Melville: AIP Publishing, 2013, pp. 322–325. doi: 10.1063/1.4803268.
-
Keine peer-reviewed Inhalte verfügbar
-
Employment of novel tools for the continuous characterization of the carbonaceous fraction in ambient aerosol
1.1.2018–31.1.2023
-
Keine peer-reviewed Inhalte verfügbar
-
[1]A. Keller, P. Specht, P. Steigmeier, and E. Weingartner, “Employment of novel tools for the continuous characterization of the carbonaceous fraction in ambient aerosol,” presented at the Swiss National GAW/GCOS Symposium, Online, Sep. 13, 2021. Available: https://irf.fhnw.ch/handle/11654/34533
-
[2]A. Keller, P. Specht, P. Steigmeier, and E. Weingartner, “Performance of the new continuous carbonaceous aerosol measurement system FATCAT during long term unattended measurement campaigns,” presented at the 24th ETH Conference on Combustion Generated Nanoparticles, Online, Jun. 23, 2021. Available: https://irf.fhnw.ch/handle/11654/34532
-
[3]A. Keller, P. Specht, P. Steigmeier, and E. Weingartner, “High resolution unattended particle-bound total carbon measurements and source identification at the Jungfraujoch global GAW station,” presented at the Innovation in Atmospheric Sciences, Online, May 18, 2021. Available: https://irf.fhnw.ch/handle/11654/34530
-
[4]A. Keller, P. Specht, P. Steigmeier, and E. Weingartner, “High resolution unattended particle-bound total carbon measurements and source identification at the Jungfraujoch global GAW station,” presented at the European Aerosol Conference EAC 2021, Online, 2021. Available: https://irf.fhnw.ch/handle/11654/34531
Kontakt
-
Prof. Dr. Ernest Weingartner
- Gruppenleiter Aerosoltechnologie, Dozent für Mess- und Sensortechnik
- Telefonnummer
- +41 56 202 79 18 (Direkt)
- ZXJuZXN0LndlaW5nYXJ0bmVyQGZobncuY2g=
- Fachhochschule Nordwestschweiz FHNW
Hochschule für Technik
Klosterzelgstrasse 2
5210 Windisch - Raum 1.231