Skip to main content

​​Modul Künstliche Intelligenz

Ist künstliche Intelligenz (KI) relevant für die berufliche Zukunft? Es scheint, dass ein «Ja» sich hinsichtlich jüngster Entwicklungen unweigerlich als Antwort aufdrängt.

Eckdaten

Abschluss
Weiterbildungsbestätigung
Nächster Start
Oktober 2025
Dauer
2 x 2 Tage
Unterrichtstage
4
Unterrichtssprache
Deutsch
Ort
Olten
Preis
CHF 2'100.-

Dieses Modul befasst sich mit Spatial Data Science, Spatial Statistics und vor allem mit künstlicher Intelligenz. 

Beim Themenkomplex künstlichen Intelligenz erfolgt eine Einführung in die Grundbegriffe, Funktionsweise, Limitationen und Anwendungen (Machine Learning und Deep Learning). Es werden Methoden und Umsetzungen mit Google Colab sowie weiteren Implementierungstools vorgestellt und auch eingeständige Implementierungen umgesetzt. 

In der Spatial Data Science erfolgt eine Einführung in ein Data Science Projekt und es werden räumlich-zeitliche Datensätze mit GIS-Software erkundet sowie reproduzierbare räumliche Analysen und Dokumentationen erarbeitet. 

Bei der Spatial Statistics erfolgt eine Einführung in die Autokorrelation in räumlichen Daten. Anschliessend werden unterschiedliche Konzepte der räumlichen Nachbarschaft und Masse gezeigt, um die räumliche Autokorrelation zu quantifizieren. Die Strategien, um den Einfluss der räumlichen Autokorrelation zu ermitteln und ein falsch spezifiziertes Modell zu erkennen, runden den Themenkomplex diesen ab. 

Die theoretischen Grundlagen werden durch Übungen und Gruppenarbeiten anhand von praktischer Umsetzung vertieft. 

Detailprogramm 

Spatial Data Science
Mo, 20. Oktober 2025, 08.45 - 16.15 Uhr

  • Explorative räumliche Datenanalysen
  • Best Practices und Reproduzierbarkeit
  • Möglichkeiten und Herausforderungen Echtzeitdaten

Spatial Statistics
Di, 21. Oktober 2025, 08.45 - 16.15 Uhr

  • Räumliche Autokorrelation und das erste Gesetz der Geografie
  • Räumliche Regression und Interpolation

Machine Learning I
Mo, 27. Oktober 2025, 08.45 - 16.15 Uhr

  • Einführung in Machine Learning und Deep Learning
  • Anwendungsbeispiele in der Geomatik, mit Workshop

Machine Learning II
Di, 28. Oktober 2025, 08.45 - 16.15 Uhr

  • Vertiefung einzelner Aspekte des Machine Learning (z.B. Trainingsstrategien, Deep Learning Architekturen)
  • Anwendungsbeispiele in der Geomatik, mit Workshop Teil II

Programmänderungen sind vorbehalten. 

Dozierende

Programmänderungen sind vorbehalten. 

Beteiligte 

Prof. Dr. Pia Bereuter, Prof. Dr. Denis Jordan, Adrian Meyer und Dr. Peter Ranacher. 

Weiterbildungskurs 

Das Modul kann als Weiterbildungskurs besucht werden. Als Abschluss wird eine Weiterbildungsbestätigung ohne ECTS-Punkte ausgestellt. 

Der Kurs kann an den CAS Spatial Data Analytics angerechnet werden. 

Bei Interesse wenden Sie sich an Pia Bereuter. 

Der Aufbau von Datenkompetenz (Data Literacy) in Unternehmen und Organisationen ist besonders wichtig, um Daten, Methoden und Analysen sinnvoll in Kontext zu setzen, korrekt zu interpretieren und entsprechend fundierte Entscheidungen abzuleiten. Dies setzt eine angepasste Kommunikation und Visualisierung von räumlichen Analysen voraus.


Fortbildung_fuer_ingenieurgeometer.pngDiese Weiterbildung zählt als Fortbildung für die Ingenieur-Geometerinnen und -Geometer und wird von der Kommission für Ingenieur-Geometerinnen und -Geometer empfohlen.

Orte

FHNW Campus Olten

Fachhochschule Nordwestschweiz FHNW Riggenbachstrasse 16 4600 Olten
Mehr Infos zum Standort
Diese Seite teilen: