MADFORWATER
Climate change and population growth are expected to exacerbate the water crisis of Mediterranean African Countries (MACs), where agriculture accounts for 80-85% of freshwater consumption. The aim of MADFORWATER is to develop a set of integrated technological and management solutions to enhance wastewater treatment, reuse for irrigation and water efficiency in agriculture in three MACs (Tunisia, Morocco and Egypt).
MADFORWATER will develop and adapt to three main hydrological basins in the selected MACs technologies for the production of irrigation-quality water from drainage canals, municipal, agro-industrial and industrial wastewaters, and technologies for water efficiency and reuse in agriculture, initially validated at laboratory scale. Selected technologies will be further adapted and validated in four field pilot plants of integrated wastewater treatment/reuse. Integrated strategies for wastewater treatment and reuse targeted to the selected basins will be developed, and guidelines for the development of integrated water management strategies in other basins of the three target MACs will be produced, considering climate change, population increase and economic growth scenarios.
The social and technical suitability of the developed technologies and non-technological instruments in relation to the local context will be evaluated with the participation of MAC stakeholders and partners. Guidelines on economic instruments and policies for the effective implementation of the proposed water management solutions in the target MACs will be developed.
The project will lead to a relevant long-term impact in Egypt, Morocco and Tunisia in terms of increased wastewater treatment, wastewater reuse, food production and income in the agricultural and water treatment sectors, and decreased groundwater exploitation, water pollution and food contamination. The MADFORWATER consortium consists of 18 partners, 5 of which from the 3 MACs and 1 from China.
The Role of FHNW
The FHNW contributes in enzyme immobilisation onto (nano)materials. In addition to this, FHNW carries out life cycle assessments on the technologies and water scarcity analysis.
Contact
Group Leader and Lecturer, Environmental Biotechnology