
n

Patient-Centric eHealth Data Exchange Using Distributed Ledger Technology

Master Thesis MSc Medical Informatics Nico Heiniger

Agenda

 $\mathbf{n}|\mathcal{U}$

- Research problem and motivation
- Approach to the problem solution
- Software architecture
- Prototype demonstration
- Results
- Conclusion
- Q & A

Research Problem and Motivation

Patient side

• Smart watches / wearables track heartrate and sleep rhythm

- Fitness apps track nutrition and workout data
- General practitioner visits generate data (blood tests, medical history)

Researcher side

- Artificial intelligence and machine learning to discover new drugs or predict patient outcome
- Prediction models need large amounts of data
- Data collected in clinical trials is expensive and can deviate from realworld setting
- → Large amount of data (RWD) needed

→ Large amount of data created

n

Research Problem and Motivation

What are the technical possibilities for designing a platform to share health data between patients and researchers?

Approach to the Problem Solution

Analysis of stakeholders and their core requirements

- Patient: Data Privacy & Transparency
- Research: Data Quality & Integrity and Performance & Efficiency
- Care Provider: not in focus

Objectives

Data Privacy & Transparency:

- The patient can see where their data has been sent.
- The patient can control whom they share their data with.
- The applicable data protection laws need to be followed.

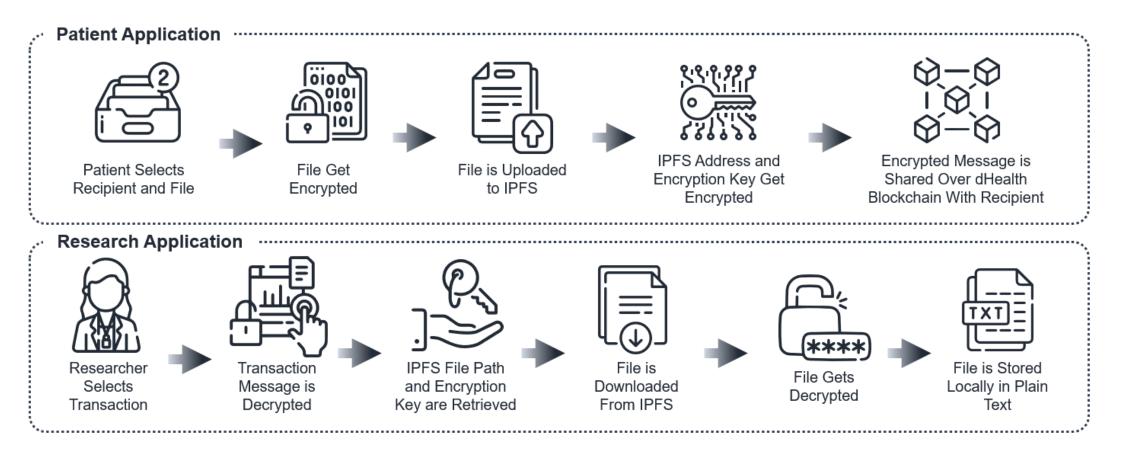
Data Quality & Integrity:

- The data needs to be in machine-readable format.
- Meta-data is available.

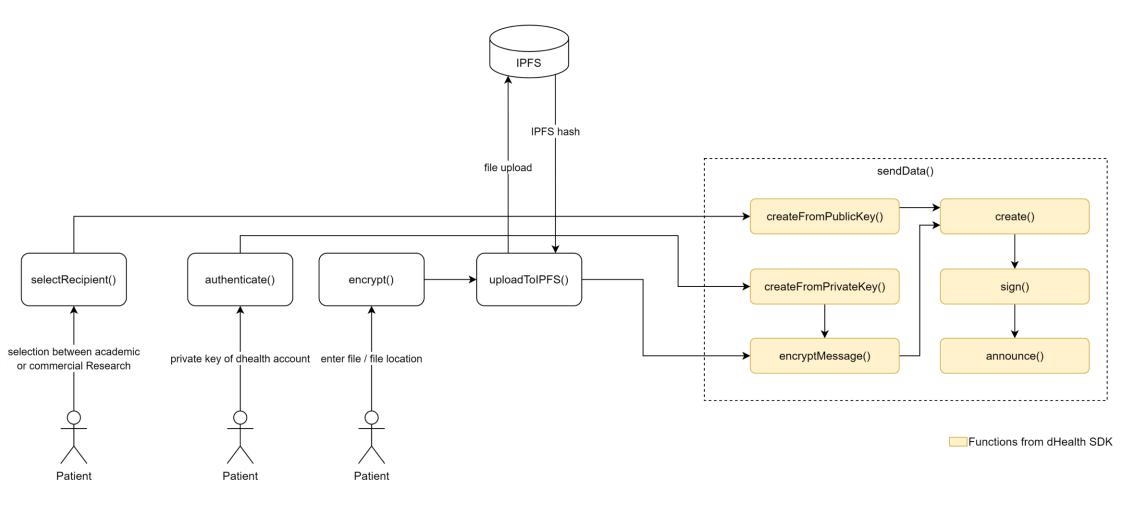
Performance & Efficiency:

- Access to data should be fast (number of transaction per second > 60).
- Response time should be acceptable (loading times < 4 seconds).

Methodology

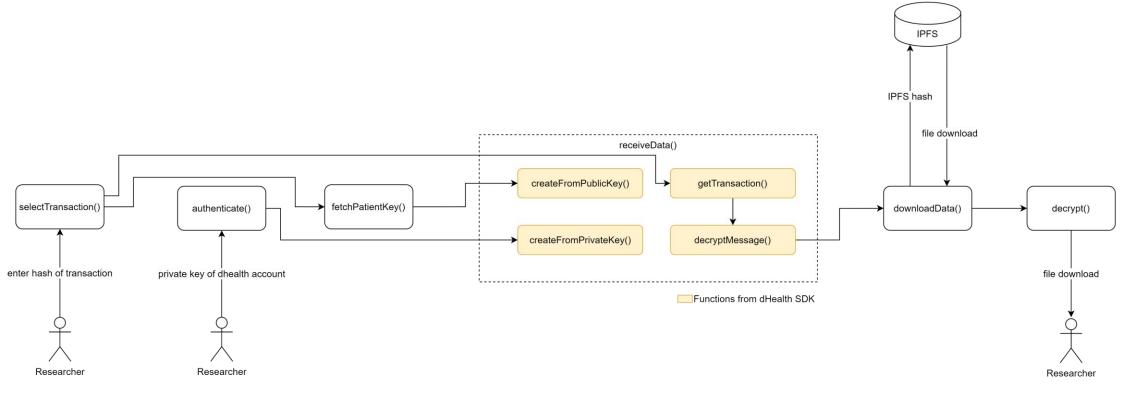

- Minimum viable product (MVP) → proof-of-concept
- Blood sample data (laboratory results)
- Build a prototype using dHealth blockchain
- Evaluate prototype based on own objectives and requirements from existing frameworks

Software Architecture


Technology stack used:

- TypeScript and Node.js in Visual Studio Code
- HL7 file format
- AES-256 encryption algorithm
- dHealth network as blockchain for the data exchange
- IPFS network as a distributed data storage

Software Architecture: Process



Software Architecture: Patient Application

n

Prototype Demonstration

Results

- Working prototype using dHealth and IPFS
- Prototype covers Data Privacy, Data Quality and Performance objectives almost fully
- 91% of requirements are covered by default or with organisational extension
- Performance and cost suggest scalability
 - Transactions per second: 60
 - Annual transaction fees: around 4000 CHF

Results: Objective

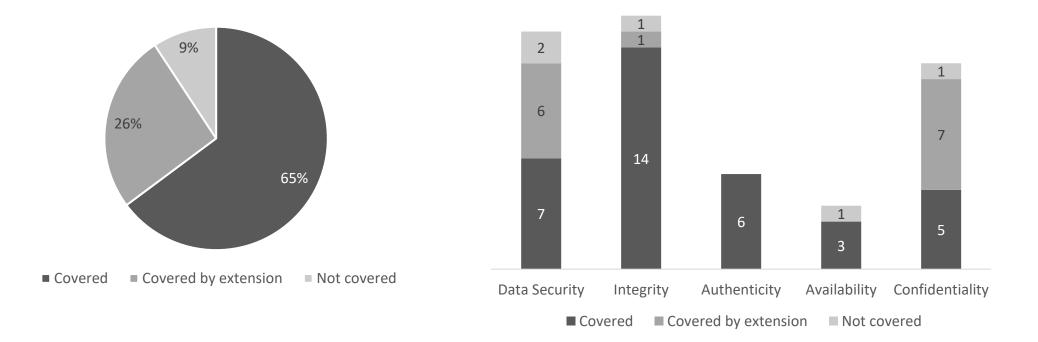
Data Privacy & Transparency:

- The patient can see where their data has been sent.
- The patient can control whom they share their data with.
- The applicable data protection laws need to be followed.

Data Quality & Integrity:

- The data needs to be in machine-readable format.
- Meta-data is available.

Performance & Efficiency:


- Access to data should be fast (number of transaction per second > 60).
- Response time should be acceptable (loading times < 4 seconds).

University of Applied Sciences and Arts Northwestern Switzerland School of Life Sciences

Results: Requirements

91% of requirements are covered by default or with organisational extension

Results: Data Deletion in Theory

GDPR Chapter 3, Art. 17:1

The right to be forgotten: Individuals have the right to ask for the complete deletion of their personal data with an organisation. In such a situation, the organisation is also obliged to notify any third parties with whom the data was shared.

¹ https://gdpr-info.eu/art-17-gdpr/

Results: Data Deletion in Reality

- Deletion occurs when it is no longer possible for anyone to recognize the information in question without disproportionate effort.¹
- In previous rulings by the European Court of Justice a "sufficient deletion" was the failure to display certain information.²
- The obligation to delete does not include copies made by third parties to whom the data has been shared.³
- In this case, only the data controller's notification obligation apply.³

¹ Herbst, T. (Ed.). (2020). Art. 4 Nr. 2 DS-GVO N 36. In Datenschutz-Grundverordnung, BDSG: Kommentar (3. Auflage). C.H. Beck. ² Google LLC vs CNIL. (2019) / Google Spain vs AEPD. (2014).

³ Herbst, T. (Ed.). (2020b). Art. 17 DS-GVO N 41. In Datenschutz-Grundverordnung, BDSG: Kommentar (3. Auflage). C.H. Beck.

Conclusion

- Data sharing / donation is technically feasible
- High level of trust of blockchain technology through immutability, transparency and security
- High availability and integrity through distributed storage network
- Most likely GDPR requirements are covered, further legal clarification needed
- Further research should be done into other encryption methods, aggregate transactions and the economical perspective

Q & A

