
68 May/June 2014 Published by the IEEE Computer Society 0272-1716/14/$31.00 © 2014 IEEE

Education Editors: Gitta Domik
and Scott Owen

Beyond Minecraft
Facilitating Computational Thinking through Modeling
and Programming in 3D
Alexander Repenning, David C. Webb, Catharine Brand, Fred Gluck, Ryan Grover,
Susan Miller, Hilarie Nickerson, and Muyang Song
University of Colorado Boulder

The popularity with children of 3D design
environments such as Minecraft has re-
vealed previously untapped interests in

modeling worlds, regardless of whether they’re
real or fantasy. As processors and graphics engines
have improved, so have opportunities to consider
how 3D programming environments might engage
a signifi cant proportion of the next generation of
students in computer programming. We believe
that when students have access to programming
environments that can model interesting social,
natural, and imagined phenomena, they’ll more
likely see programming as an essential skill for
rendering their worlds.

Programming in three dimensions is engaging to
young people who have regular experiences with 3D
virtual worlds. Their experiences with high-quality
3D media—in movies, television, and gaming—have
raised their expectations for computer-based design
experiences. It’s also important to consider design
as an entrée to computer programming because
representing agent behavior in 3D is an activity
in which design and programming are seamless.
When children focus primarily on modeling the
world and related agent interactions, they fi nd
that programming is just part of the design pro-
cess rather than an arbitrary skill set requiring the
completion of a class.

As part of a large-scale study of computer sci-
ence education based on the Scalable Game Design
curriculum, we’ve introduced more than 12,000
students and more than 200 teachers to 2D and
3D end-user programming environments to create
games and STEM (science, technology, engineering,
and mathematics) simulations. AgentSheets, our 2D
environment, has been used for years in computer
science education and computational-science simu-

lations. AgentCubes, a much more recent 3D en-
vironment, can turn AgentSheets projects into 3D
projects through a process we call incremental 3D.1

On the surface, 3D sounds much more appealing
than 2D, but what are the benefi ts of creating and
using 3D? Here, we discuss our experiences with
the differences between 2D and 3D as they relate
to three concepts connecting computer graphics to
computer science education: ownership, spatial
thinking, and syntonicity.

Ownership
We’ve found ownership, and the related notion of
creativity, important to motivation. Motivation,
in turn, is a key to computer science education.
Students who believe programming is diffi cult and
boring won’t likely engage in computing careers.

In spite of its simplicity, AgentSheets’ 2D depiction
editor was a key factor in getting students excited
about computing by fi rst having them draw objects
they can use as characters in their worlds. Although
middle-school students have developed higher ex-
pectations for computer graphics by playing sophis-
tically rendered 3D games such as Halo 3, to our
surprise they still enjoyed AgentSheets’ simple 2D
depictions. As one student put it, “I like it because I
made it.” More generally, we found such ownership
essential to broaden student participation.2

The big appeal of a simple 2D depiction editor is
that it has a low threshold for engaging in creative
endeavors. Typically, the same thing can’t be said
about 3D creativity, which is often perceived as
far more arduous. Tools to create 3D objects from
scratch, such as Maya 3D or Blender, have intri-
cate interfaces with steep learning curves and are
well suited for professional 3D modelers but much
less so for end-user designers. Most educational

g3edu.indd 68 4/24/14 8:40 PM

 IEEE Computer Graphics and Applications 69

3D programing environments minimize 3D mod-
eling’s obscurities by offering limited 3D mecha-
nisms. With Alice, for instance, most users don’t
create their own 3D models but select 3D objects
from a palette. In Minecraft, users assemble objects
consisting of large numbers of boxes.

In contrast, we aimed to preserve the rapid-
sketching spirit of 2D icon editing. So, we de-
veloped the Inflatable Icons approach. To create
simple 3D shapes incrementally from scratch, us-
ers draw a 2D image and inflate it into a 3D im-
age (see Figures 1 and 2). This paint-then-model
approach differs radically from most other model-
then-paint end-user 3D-modeling approaches.

In AgentCubes, with little more than a minute
of instruction, students can build 3D models (see
Figure 3). Of course, these shapes are aimed not
at Pixar animators but at casual 3D modelers.
Teacher and student feedback confirms that cre-
ating these 3D shapes is highly motivational. In
some cases, teachers “complained” that students
were so excited to create 3D shapes that they spent
too much time with 3D modeling.

Spatial Thinking
If the main objective is for students to learn about
computational thinking, educators must carefully
consider the benefits and costs of employing 3D
technology. Inflatable Icons can make creation of
3D models accessible even to young children, but
creating a 3D game or simulation involves more
than just creating individual shapes. Compared
to 2D authoring, assembling 3D shapes in 3D
worlds places heavier demands on student rea-
soning. Students must be able to understand how
to control cameras, how to think in three dimen-
sions by stacking objects to build composite struc-
tures, or even how to use layers to create more
sophisticated worlds.

Figure 1. The Inflatable Icons editor. A user drew a top-down view of a volcano as an irregular brown shape with red lava inside
(see the left image). After placing the volcano in the 3D editing environment (see the right image), the user applied inflation and
other operations to create the 3D version in Figure 2.

Figure 2. With
Inflatable Icons,
the user inflated
the shape of
the volcano
in Figure 1,
added noise
to simulate a
rocky surface,
selected the
lava, removed
the noise from
the lava, and
pushed down
the ceiling to
flatten the
lava’s surface.

Figure 3. Using AgentCubes, a middle-school student created and
programmed a complex multilayered game.

g3edu.indd 69 4/24/14 8:40 PM

70 May/June 2014

Education

However, we found little evidence that students
struggle with 3D composition and camera control.
It’s certainly possible to flip worlds around and to
get the camera in an awkward position in ways that
wouldn’t have occurred in a 2D world. However,
this rarely happened. In many cases, these appar-
ent 3D-thinking skills could have resulted from
students having played advanced 3D games or 3D
construction-oriented games such as Minecraft.

Sometimes, 3D design is actually simpler than
2D design. One such case is debugging using Agent-
Cubes. For instance, when creating a Frogger-like
game, students generate trucks that move on a
road and could collide with the frog. They fre-
quently forget to program the trucks to disappear
at the end of the road, often resulting in trucks
piling on top of each other.

In the 2D environment, this stacking of trucks
goes unnoticed; from a bird’s-eye perspective,
there’s only one truck left at the end of the road.
When the game runs for a longer period, thou-
sands of trucks might be stacked at the end of the
road. This results in the game slowing significantly
and possibly crashing.

In the 3D version, just two stacked trucks will
get the student’s attention, prompting the realiza-
tion that the rule to remove the trucks must be
missing. Design in 3D requires students to think
of their worlds in ways that integrate troubleshoot-
ing and spatial visualization, which are different
aspects of computational thinking.

Syntonicity
The final concept comes from the psychology of
programming. Early on, Seymour Papert speculated
that humans’ ability to project themselves onto
objects—essentially becoming the objects—would
help them overcome otherwise difficult program-
ming challenges.3 The ability to comprehend and
even predict behaviors is called body syntonicity.

Papert and his colleagues developed the fa-
mous Logo robotic turtle, which children could
program through simple instructions that made
it move forward and turn. Later, Papert and his
colleagues replaced the physical turtle with a sim-
ulated version. The Logo programming language
eventually incorporated syntonicity, which added
a psychological aspect to the otherwise technical
framework of computation. Through syntonicity,
children could explore interactions that were dif-
ficult to understand by formulating first-person
questions, such as “If I’m this turtle and I turned
90 degrees left, what would I see?”

Ample evidence exists that programmers naturally
employ syntonic notions. For instance, program-
mers say something like, “How can the compiler do
this to me?” when they’re actually referring to the
program they wrote. However, it’s less clear what
syntonicity’s educational benefits are.

To explore this, we created a syntonic version of
the Visual AgentTalk programming language, which
is part of AgentSheets and AgentCubes. This syn-
tonic version originally had elaborate commands
using language suggesting syntonic interpretations.
For instance, instead of a “move (direction)” ac-
tion, there was an “I move to the left” action. That
is, instead of the programmer just thinking that
some object is moving, the language suggested that
it’s “I” who is moving to the left.

Although children with no programming back-
ground liked the language, more experienced users
rejected the general increase in verbosity. So, we

(a)

(b)

(c)

Figure 4. In a syntonic perspective, the user assumes
the viewpoint of an object in the virtual world. (a) A
(nonsyntonic) bird’s-eye perspective. (b) A syntonic
frog perspective. (c) A syntonic car perspective.

g3edu.indd 70 4/24/14 8:40 PM

 IEEE Computer Graphics and Applications 71

compromised. We kept the short command names
for the actual visual-programming language. In
addition, we offered mechanisms such as expla-
nation buttons and tool tips to provide syntonic
versions of the commands, in case users needed
help interpreting the commands’ functions.

With 3D worlds, you can go a significant step
further. You can map the psychological perspective
of becoming an object onto a user interface that
lets programmers select any object in a complex
world and put that object into a first-person per-
spective. If the object moves or turns, the camera
adjusts accordingly.

In this way, users can experience any game or
simulation in AgentCubes from the perspective of
any of its objects (see Figure 4). Many students
have employed and enjoyed this feature, but we
have no evidence whether students are actually as-
suming syntonic perspectives. We also don’t know
whether this feature really helps overcome chal-
lenges more easily than would be possible in 2D.

However, we’ve connected this syntonic perspec-
tive explicitly with our programming environment
through conversational programming.4 This ap-
proach has proven useful for semantic-programming
support. When a user selects an object in Agent-
Cubes, the programing environment immediately
shows that object’s code. It also runs that code one
step into the future and annotates the program to
show what the object in its current state will do.

As you can see, 3D computer graphics are
highly relevant to computer science education

for reasons beyond motivation. In our experience,
to receive 3D graphics’ full benefits for computer
science education, novel programming environ-
ments should support authoring approaches that
incorporate 3D rapid sketching and should explore
ways to connect 3D navigation with semantic sup-
port for programming.

AgentCubes Online, which employs HTML5 and
WebGL (Web Graphics Library), is the first browser-
based 3D-modeling and visual-programming tool
of its kind. Over 250,000 students worldwide have
used it as one of the Hour of Code tutorials; you
can play with it at http://hourofcode.com/ac.

Acknowledgments
The US National Science Foundation supported this re-
search under grants CNS-1138526 and DRL-1312129.
Any opinions, findings, and conclusions or recommen-
dations expressed in this article are the authors’ and
don’t necessarily reflect the NSF’s views.

References
 1. A. Ioannidou, A. Repenning, and D.C. Webb, “Agent-

Cubes: Incremental 3D End-User Development,” J.
Visual Languages and Computing, vol. 20, no. 4, 2009,
pp. 236–251.

 2. D.C. Webb, A. Repenning, and K.H. Koh, “Toward
an Emergent Theory of Broadening Participation in
Computer Science Education,” Proc. 43rd ACM Tech.
Symp. Computer Science Education, 2012, pp. 173–178.

 3. S. Papert, Mindstorms: Children, Computers, and
Powerful Ideas, 2nd ed., Basic Books. 1993.

 4. A. Repenning, “Conversational Programming: Exploring
Interactive Program Analysis,” Proc. 2013 ACM Int’l
Symp. New Ideas, New Paradigms, and Reflections on
Programming & Software, 2013, pp. 63–74.

Alexander Repenning is a computer science professor at
the University of Colorado Boulder. Contact him at alexander.
repenning@colorado.edu.

David C. Webb is an associate professor of curriculum and
instruction at the University of Colorado Boulder. Contact
him at dcwebb@colorado.edu.

Catharine Brand is a community volunteer for the Scal-
able Game Design project. Contact her at catharine.brand@
gmail.com.

Fred Gluck is an instructor at the University of Colorado
Boulder Science Discovery program. Contact him at fred.
gluck@comcast.net.

Ryan Grover is a PhD candidate in curriculum and instruc-
tion—math at the University of Colorado Boulder. Contact
him at ryan.grover@colorado.edu.

Susan Miller is a PhD student in curriculum and instruc-
tion—math at the University of Colorado Boulder. Contact
her at susan.miller@colorado.edu.

Hilarie Nickerson is a PhD student in computer science
and cognitive science at the University of Colorado Boulder.
Contact her at hnickerson@colorado.edu.

Muyang Song is a master’s student in computer science at
the University of Colorado Boulder. Contact him at muyang.
song@colorado.edu.

Contact department editors Gitta Domik at domik@
uni-paderborn.de and Scott Owen at sowen@gsu.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

g3edu.indd 71 4/24/14 8:40 PM

